首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   3篇
  国内免费   3篇
安全科学   4篇
废物处理   4篇
环保管理   28篇
综合类   22篇
基础理论   32篇
污染及防治   43篇
评价与监测   9篇
社会与环境   6篇
灾害及防治   4篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   12篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   10篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   5篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1971年   2篇
  1970年   2篇
  1960年   1篇
排序方式: 共有152条查询结果,搜索用时 203 毫秒
31.
Background, Aim and Scope The cow-calf (Bos taurus) industry in subtropical United States and other parts of the world depends almost totally on grazed pastures. Establishment of complete, uniform stand of bahiagrass (BG) in a short time period is important economically. Failure to obtain a good BG stand early means increased encroachment of weeds and the loss of not only the initial investment costs, but production and its cash value. Forage production often requires significant inputs of lime, N fertilizer, and less frequently of P and K fertilizers. Domestic sewage sludge or biosolids, composted urban plant debris, waste lime, phosphogypsum, and dredged materials are examples of materials that can be used for fertilizing and liming pastures. Perennial grass can be a good choice for repeated applications of sewage sludge. Although sewage sludge supply some essential plant nutrients and provide soil property-enhancing organic matter, land-application programs still generate some concerns because of possible health and environmental risks involved. The objectives of this study were to evaluate the cumulative and residual effects of repeated applications of sewage sludge on (i) bahiagrass (BG, Paspalum notatum Flügge) production over years with (1997–2000) and without (2001–2002) sewage sludge applications during a 5-yr period, and (ii) on nutrients status of soil that received annual application of sewage sludge from 1997 to 2000 compared with test values of soils in 2002 (with no sewage sludge application) in South Florida.Methods The field experiment was conducted at the University of Florida Agricultural Research and Education Center, Ona, FL (27o26’N, 82o55’W) on a Pomona fine sandy soil. With the exception of the control, BG plots received annual sewage sludge and chemical fertilizers applications to supply 90 or 180 kg total N ha–1 yr–1 from 1997 to 2000. Land application of sewage sludge and fertilizer ceased in 2001 season. In early April 1998, 1999, and 2000, plots were mowed to 5-cm stubble and treated with the respective N source amendments. The experimental design was three randomized complete blocks with nine N-source treatments: ammonium nitrate (AMN), slurry biosolids of pH 7 (SBS7), slurry biosolids of pH 11 (SBS11), lime-stabilized cake biosolids (CBS), each applied to supply 90 or 180 kg N ha–1, and a nonfertilized control (Control). Application rates of sewage sludge were calculated based on the concentration of total solids in materials as determined by the American Public Health Association SM 2540G method and N in solids. The actual amount of sewage sludge applications was based on the amount required to supply 90 and 180 kg N ha–1. Sewage sludge materials were weighed in buckets and uniformly applied to respective BG plots. Soil samples were collected in June 1997, June 1999, and in June 2002 from 27 treatment plots. In 1997 and 1999, soil samples were collected using a steel bucket type auger from the 0- to 20-, 20- to 40-, 40- to 60-, and 60- to 100-cm soil depths. Forage was harvested on 139, 203, 257, and 307 day of year (DOY) in 1998; 125, 202, 257, and 286 DOY in 1999; 179, 209, 270, and 301 DOY in 2000; and on 156 and 230 DOY in 2002 (no sewage sludge applications) to determine the residual effect of applied sewage sludge following repeated application. Forage yield and soils data were analyzed using analysis of variance (PROC ANOVA) procedures with year and treatment as the main plot and sub-plot, respectively. As a result of significant year effects on forage yield, data were reanalyzed annually (i.e., 1998, 1999, 2000, and 2002).Results and Discussion All sewage sludges used in this study were of class B in terms of USEPA’s pathogens and pollutant concentration limit. Pathogen and chemical composition of the class B sewage sludge that were used in the study were all in compliance with the USEPA guidelines. The liquid sludge (SBS11) had the lowest fecal coliform counts (0.2 x 106 CFU kg–1) while the cake sewage sludge (CBS) had the greatest coliform counts of 178 x 106 CFU kg–1. The fecal coliform counts for SBS7 was about 33 x 106 CFU kg–1. Average soil test values in June 2002 exhibited: i) decrease in TIN (NO3-N + NH4-N), TP, K, Ca, Mg, Mn, and Fe; and ii) slight increase in Zn and Cu when compared with the June 1997 soil test results. The overall decrease in soil test values in 2002 might be associated with nutrient cycling and plant consumption. Although the average BG forage yield in 2002 (2.3 ± 0.7 Mg ha–1) was slightly lower than in 2000 (3.5 ± 1.2 Mg ha–1), yield differences in 2002 between the control (1.2 + 0.2 Mg ha–1) and treated plots (2.3 ± 0.5 Mg ha–1 to 3.3 ± 0.6 Mg ha–1) were indicative of a positive residual effect of applied sewage sludge. This study has shown that excessive build up of plant nutrients may not occur in beef cattle pastures that repeatedly received sewage sludge while favoring long-term increased forage yield of BG. All sources of N (sewage sludge and AMN) gave better forage production than the unfertilized control during years with sewage sludge application (1997–2000) and also during years with no sewage sludge application (2001–2002). The favorable residual effects of applied sewage sludge in 2002 may have had received additional boost from the amount of rainfall in the area.Conclusions Repeated applications of sewage sludge indicate no harmful effects on soil quality and forage quality. Our results support our hypothesis that repeated land application of sewage sludge to supply 90 and 180 kg N ha–1 would not increase soil sorption for nutrients and trace metals. Results have indicated that the concentrations of soil TIN and TP declined by almost 50% in plots with different nitrogen sources from June 1997 to June 2002 suggesting that enrichment of nitrogen and phosphorus is insignificant. The concentrations of soil nitrogen and phosphorus in 2002 following repeated application of sewage sludge were far below the contamination risk in the environment. The residual effect of these sewage sludge over the long term can be especially significant in many areas of Florida where only 50% of the 1 million ha of BG pastures are given inorganic nitrogen yearly.Recommendation and Outlook Successive land application of sewage sludge for at least three years followed by no sewage sludge application for at least two years may well be a good practice economically because it will boost and/or maintain sustainable forage productivity and at the same time minimize probable accumulation of nutrients, especially trace metals. Consecutive applications of sewage sludge may result in build up of some trace metals in some other states with initial high metallic content, but in this study, no detrimental effects on soil chemical properties were detected. The possibilities for economically sound application strategies are encouraging, but more and additional research is required to find optimal timing and rates that minimizes negative impacts on soil quality in particular or the environment in general. For proper utilization of sewage sludge, knowledge of the sewage sludges’ composition, the crop receiving it, are absolutely crucial, so that satisfactory types and rates are applied in an environmentally safe manner. There is still much to be learned from this study and this investigation needs to continue to determine whether the agricultural and ecological objectives are satisfied over the longer term.  相似文献   
32.
A workshop was held in Berlin September 12–14th 2012 to assess the state of the science of the data supporting low dose effects and non-monotonic dose responses (“low dose hypothesis”) for chemicals with endocrine activity (endocrine disrupting chemicals or EDCs). This workshop consisted of lectures to present the current state of the science of EDC action and also the risk assessment process. These lectures were followed by breakout sessions to integrate scientists from various backgrounds to discuss in an open and unbiased manner the data supporting the “low dose hypothesis”. While no consensus was reached the robust discussions were helpful to inform both basic scientists and risk assessors on all the issues. There were a number of important ideas developed to help continue the discussion and improve communication over the next few years.  相似文献   
33.
Environmental and Ecological Statistics -  相似文献   
34.

Background, aim, and scope  

The moss technique is widely used to monitor atmospheric deposition of heavy metals in many countries in Europe, whereas this technique is scarcely used in Asia. To implement this international reliable and cheap methodology in the Asian countries, it is necessary to find proper moss types typical for the Asian environment and suitable for the biomonitoring purposes. Such a case study was undertaken in Vietnam for assessing the environmental situation in strongly contaminated areas using local species of moss Barbula indica.  相似文献   
35.
The impact of UV-B radiation on 10 genotypically different barley and tomato cultivars was tested in a predictive study to screen for potentially UV-tolerant accessions and to analyze underlying mechanisms for UV-B sensitivity. Plant response was analyzed by measuring thermoluminescence, fluorescence, gas exchange and antioxidant status. Generally, barley cultivars proved to be much more sensitive against UV-B radiation than tomato cultivars. Statistical cluster analysis could resolve two barley groups with distinct differences in reaction patterns. The UV-B sensitive group showed a stronger loss in PSII photochemistry and a lower gas-exchange performance and regulation after UV-B radiation compared to the more tolerant group. The results indicate that photosynthetic light and dark reactions have to play optimally in concert to render plants more tolerant against UV-B radiation. Hence, measuring thermoluminescence/fluorescence and gas exchange in parallel will have much higher potential in identifying tolerant cultivars and will help to understand the underlying mechanisms.  相似文献   
36.
37.
This paper describes a novel statistical approach to derive ecologically relevant sediment quality guidelines (SQGs) from field data using a nonparametric empirical Bayesian method (NEBM). We made use of the Norwegian Oil Industrial Association database and extracted concurrently obtained data on species density and contaminant levels in sediment samples collected between 1996 and 2001. In brief, effect concentrations (ECs) of each installation (i.e., oil platform) at a given reduction in species density were firstly derived by fitting a logistic-type regression function to the relationship between the species density and the corresponding concentration of a chemical of concern. The estimated ECs were further improved by the NEBM which incorporated information from other installations. The distribution of these improved ECs from all installations was determined nonparametrically by the kernel method, and then used to determine the hazardous concentration (HC) which can be directly linked to the species loss (or the species being protected) in the sediment. This method also enables an accurate estimation of the lower confidence limit of the HC, even when the number of observations was small. To illustrate the effectiveness of this novel technique, barium, cadmium, chromium, copper, mercury, lead, tetrahydrocannabinol, and zinc were chosen as example contaminants. This novel approach can generate ecologically sound SQGs for environmental risk assessment and cost-effectiveness analysis in sediment remediation or mud disposal projects, since sediment quality is closely linked to species density.  相似文献   
38.
39.
40.
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host–parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号